*RLB2, 1=MAR=76 14:43 L < LP, MCS4.NLS;i2, > 1

[

(protocol) Protocol for TENEX [<=>] Line Processor 1interactions
Introduction

This document is a detailed description of the Line Processor
protocol. It is intended to serve as a guide to anyone wishing to
implement the Line Processor protocol, as well as, a piece of
documentation for the Line Processor.

1t should be pointed out here that the Line Processor contains a
very small, slow microcomputer with little readswrite memory. For
this reason the protocol is terse and error reports and/or
recovery almost non-existant. The Line Processor terminal is
treated more as a hardware device than an intelligent terminal.,

There are two types of line processors = alpha and graphic. Alpha
line processors are used in configurations consisting of the line
processor alphas/numeric display, mouse, keyset, and possibly a
hard copy printer or a cassette drive. Graphics line processors
are used in the the minimum graphics configuration consisting of
a/n display, mouse, keyset, and either a Tektronix 4012 or 4014
storage tube display.

Conventions
Coordinates
Alpha

Coordinates designate character positions. For example
(1,1) is the second character on the second line up from the
bottonm,

The origin is at the lower left corner of the screen.

As components of the protocol, coordinates are passed as one
byte of X and one of Y and always have 40B added to them to
get them in the printing character range., This limits the
max coordinate value to 137B which is 95 decimal.

Graphics

The mouse is used to track the cursor on either the a/n
display or the Storage tube. A switch acts as a toggle to
select which screen is to be tracked, <Coordinate values are
identical to the alpha line processor when they originate
from the a/n display, although they are sent as two bytes
each of x and v. Graphics coordinates from the storage tube
are sent as 10 bit values in the range 1024 to 2047, with
1024 at the lower left of the screen,

TTY Simulation
In ITY simulation, scrolling always takes pblace on a line feed

(LF) not a carriage return (CR). Carriage return does the
obvious thing and no more.

*RLBZ, 1-MAR=706 14:43 < LP, MCS4.NLS;2, > 2

Special and Control Characters

Protocol strings begin with 33B and are followed with an
operation type character in the range 40B to 120B.

When outside a protocol string, all control characters (0 thru
37B) are ignored by the Line Processor, except:

when the cursor is being tracked:
~G which rings a bell if possible
CR and LF which do the right thing

Notice that backspace character (~H) is not implemented in
TTY simulation (i.e. when the cursor is being tracked).

When the cursor has been positioned:
“G which rings a bell if possible
“H which does a backspace cursor

when inside a protocol string, RUBOUT is NOT ignored. #hen
outside, it is ignored,

Conventions for this document
In this document, octal numbers are followed by "B".

"Unescorted" means that characters are sent as is without
wrapping them in an protocol sequence,

Line Processor to Main Computer Protocol

Communication in this direction will gdhear jgenerally to the IMLAC
protocol as outlined in (IJOUKNAL,14345,).

In particular:

Kevboard characters 40B thru 177B are unescorted,

Kevyboard characters 0 thru 37B are sent as:
34B, 43B, char+140B, coordinates
NOTE: An alternate (and preferred) way is to send these
control characters as is (unescorted) except for 2B, 4B and
30B. Those are sent as above,

Mouse button changes are send as:

34B, 43B, buttons+100B, coordinates

where buttons is the binary image of butten positons (000

RLB2, 1=-MAR=76 14:43 < LP, MCS4.NLS;2, > 3
thru 111 binary).
Keyset strokes 1 thru 32B are send as:
stroke+140B (e.g., 1 => a)
keyset strokes 33B thru 37B are sent as:
33B => 54B (,)
34B => 56B (.)
35B => 73B (3)
36B => 77B (7?)
378 => 40B (space)
For alpha line processors coordinates are X + 40B, Y + 40B.
For graphics line processors coordinates are X(bits 10 = 6
(MSB’s)) + 40B, X(bits 5 = 0 (LSB*)) + 40B, Y(bits 10 =~ 6) +
40B, Y(bits 5 = 0).
wWwhen not in coordinate mode the mouse buttons are ignored and
keyboard control characters (0 thru 37B) are sent in unescorted

fashion.

At power=up and after the "system=~reset" button is pushed, the
Line Processor signals the Main computer by sending:

(176B, 177B)
The purpose of this is to indicate to the applications program
that the Line Procesor is now in a "power=-up" state (see
below).
When the Line Processor detects an error that it cannot live with,
it sends a string to the applications prorgam and dies with an
error code flashing in the lights. The user is then forced to hit
"system-reset®, The string is as follows:
(176B, 41B, Ccount*, Chars)
Where Ccount’ is 40B more than the number of characters that
follow. Currently 8 characters are sent, and the string
looks like:

(176B, 41B, 50B, err*’, ctl*’, trk’, rpt’, sw’, obuf’, bl’, b2’
)

where the ’ indicates that 40B has been added.
err: The error code, one of

10B = output buffer to display overun (impropper

‘RLBZ, 1-MAR=76 14:43 < LP, MCS4.NLS;2, > 4

padding).

11B some other buffer overun (e.g. pPrinter buffer)

12B strange error relating td display output buffer.

"

13B = protocol sequence error (e.g. bad comand)
14B = protocol value error (e.g. bad coordinate).
ctl: control state parameter (0 = not in a command)

trk: mouse tracking code:

0 = positioned
1 = tracking
2 = cursor in small TTY window

5: cursor at unknown position
12B = Cursor in full screen window
rpt: repeat code, normally zero
SW: sense switch immage in order O-1=2-3 (sw3=LSB)
obuf: display output buffer character count
bl: possibly low order 4 bits of last input char
b2: possibly high order 4 bits of last input char
From Main Computer to the Line Processor
The following functions are sent by the applications program and
performed by the Line Processor. All codes, except the escape
(33B) should be printing characters., Padding characters should be
RUBOUTs (177B). The baud rate factor (f) and and display type are
obtained by the applications program by sending an interogate
command.
Note:
The cursor is generally used to track the mouse, Some
commands stop the tracking and allow the cursor to be used
for display manipulation, "Tracking mode" refers to whether
the mouse is being tracked by the cursor or not.
Display=terminal dependent parameters:
The following table yields the timing and other factors
required by the protocol that depend on the type ¢of terminal

connected to the Line Procesor. That type, DItype, is
obtained from the interrogate command (see below).

RLBZ,

1-MAR=76 14:43

param
1
Del 80
Ins 0
Clr 5
Lmark
Del is the time
Ins is the time
Clr is the time

Xmark indicates
after the mark

See the interro
parameters.

Position cursor on
Send(33B, 408B,
x“= X coord
Y* = Y coord
result:
| Positions cu
until a "res

unescorted ¢
the cursor w

< LP, MCS4.NLS;2, > 5

Ditype=
2 3 4
7 1 17
7 30 17
6 3 17
No Yes Yes Yes

to delete a line,
taken to insert a new line.
taken to clear the screen.

if a marked character needs to be re-written
is removed,

gate response command for otnher dispiay

alpha display and stop tracking mouse,.
X', ¥°)
(0 thru Xmax) + 408B

(0 thru Y¥max) + 40B

rsor to specified location. Tracking stops
ume tracking" or a reset is received. Any
haracters will be written on the screen and
ill be advanced once after each character.

Writing beyond the end of the line is not advised as the

result depen
Specify (smalil) TT
send(33B, 418B,
"top = Y’ for
bottom = Y’

result:

ds on the terminal manufacturer and model,
Y simulation window on alpha display

top, bottom)

toplline of window

for bottom line of window

Invokes a small TTY simulation window of specified size

and location
specified or
the tracking

» This window will be used until a new one is
a reset is received. This does not change
mode.,

RLB2, 1=MAR=76 14:43 < LP, MCS4.NLS;2, > 6

Reset
Send(33B, 51B)
result:
screen cleared
TTY simulation window set to full screen
bug selection stack reset
resume tracking (see)
padding:
Send pads as for clear screen,
Resume tracking mouse
Send(33B, 42B)

result:

The cursor is used tec track the mouse. Any unescorted
characters will go into the TTY simulation window

currently in use.
Write string of blanks
Send(33B, 43B, N*)

N’ = number of blanks to be written.

result:

The specified number of blanks are written starting at
the current cursor position. The cursor is left at the
character position following the last blank. Assumes the
cursor has been positioned appropriately beforehand.

This command is a no=op if N’ is not >= 41B AND <= 177B.

padding:

This command must have N/f padding characters following
it.

Push bug selection
Send(33B, 46B, X', Y')

result:

The coordinates are pushed on a stack and the character

RLB2, 1=-MAR=76 14:43 < LP, MCS4.NLS;2, > 1
at that location is somehow brought to the user’s
attention. The stack will hold a maximum of 8 selections,
This command includes a resume tracking.
padding:

This command must have 8/f padding characters following
it.
Por bug selection

Send{(33B, 47B)

result:
The top entry on the bug selection stack is poppred., The
corresponding character on the screen is no longer marked
in a special way. 1f the stack is empty, this command is
a no=-op. This command includes a resume tracking
operation.
For some DItypes, the applications program must restore
the character or the marked position will be replaced by
a space.

padding:

This command must have 8/f padding characters following
it.
Delete selected line

Send(33B, 44B)

result:
The cursor position selects a line to be removed from the
screen.,. All following lines are moved up one line. The
contents of the last line are undefined. The X
coordinate should be zero, otherwise the results are
undefined.

paddinq:

This command requires Del/f padding characters (Del is
obtained from the table).

Insert selected line
Send(33B, 45B)
result:
The line which the cursor is on, and all following lines,

are moved down one line. The cursor is not moved, and
hence is on a blank line, Lines above the cursor are not

RLBZ, i-MAR=76 14:43 < LP, MCS4.NLS;2, > 8
altered. The last line (before the execution of this
command) should be considered "lost." The X coordinate
should be zZero, otherwise the results are undefined.,
padding:

This command requires Ins/f padding characters (Ins is
obtained from the table).

Clear screen
Send(33B, 50B)
result:
The entire screen is cleared, The cursor position is not
generally known. The TTY simulation window location and
the bug selection stack are not altered. The tracking
mode is not changed.
padding:
This command requires Clr/f pad characters:;
Interrogate line processor
Send(33B, 55B)

result:

A response to the interrogate command is sent as a
protocol string of this form:

34B, 46B, Xmax+40B, Ymax+40B, LPtype, Dtim Rate
Where

Xmax is the maximum X coordinate

Ymax is the maximum y coordinate

LPtype is in [40B=177B] and designates type

The least significant four bits of LPtype
designate display terminal type (call it DItype)

Currently defined are:
(1) Delta Data 5200
(2) Hazeltine H2000
(3) Data Media Elite 2500

(4) Lear Siegler ADM~2

RLBZ, 1-MAR=76 14:43 < LP, MCS4.NLS:;2, > 9

The most sianificant three bits designate Line
Processor type (call it Tvpe)

Currently defined are:

(0) Complete alpha line processor with
copy printer receiver for cassette drive

(2) Line Processor with Mouse, Kevyset,
Printer

(6) Graphics line processor with Tektronix
4014

(7) Graphics line processor with Tektronix
4012

Dtim is a characteristic delay time, For proper
scrolling, a line feed (LF) must be followed by
(Dtim+14)/f pad characters,

Rate indicates the Line Processor receive baud
rate:

300 buad: 100B, £=32 decimal
600 baud: 608, f£=16
1200 baud: 50B, £=8
2400 baud: 44B, f=4
4800 baua: 4zB, f=2
9600 baud: 41B, f=1
The baud rate factor, f - Rate=-40B;
Note: Any additions to LPtype should be assigned by
ARC personel for best results. See DIA or CHI
@SRI=ARC.
This command does not change the traékinq mode.
Turn off coordinate mode
Send(33B, 60B)
result:

Turns off the coordinate mode in the Line Processor. This
does not change the tracking mode,

Mouse buttons become inactive, Keyboard control
characters sent to main computer without protocol
formatinge.

RLB2, 1-MAR~76 14:43 < LP, MCS4.NLS;2, > 10

Turn on coordinate mode
send(33B, 61B)
result:

Turns on the coordinate mode in the Line Processor. This
does not change the tracking mode.

Mouse buttons become active, keyboard control characters
are sent in input protocol format,

Begin standout mode
Send(33B, 56B)
result:
All following text written on the screen will be altered
is some way from "normal" text., This unfortunately
includes characters which go into the TIY simulation
window also, so don‘t leave the line processor in this
state indefinitely. Does not change the tracking mode,
End standout mode
Send(33B, 57B)

result:

Subsequent text written on the screen will be in "normal®
mode. Does not change the tracking mode.

TENEX RESTARTING
The Line Processor will detect a TENEX restart, by looking
for the ten 33B’s it sends out at startup time, At that
time it will place itself in a state as though the hardware
reset button had been pushed,
Open printer (alpha line processor only)
Send(33B, 53B)
Result:
Opens the printer for output. Protocol to the printer
must be observed: (1) open it. (2) wait for protocol ,
string "regquest" (below). (3) send strings in response to
requests., (4) close it.
"Request" string, sent back to the main computer:

0B NULL

RLBZ,

i=-MAR=76 14:43 < LP, MCS4.NLS:;2, > 11

Each request enables the application program to
send an additional 16 characters via the printer
string protocol below.

Note: The count indicates the Line Processor storage
allocated for the next printer string. Sending a longer
string will result in a "receive error" (error light on
panel).

Close printer (alpha line processor only)
Send(33B, 54B)

Result:

Closes the printer., Actual close will not take place
until all characters in the output buffer are printed.
That is, the close may follow the last string of
characters immediately, It is possible (but very
unlikely) that a "request" protocol string may be sent to
the main computer after the close is sent to the Line
Processor.

Printer string (alpha line processor only)
Send(33B, 52B, Dev, Count+40B, <characters>)

Result:

The Dev is normally 40B and is ignored by Line Processors
with one printer. The Count must not be greater than the
sum of the counts in all "regquest" protocol string not
already fulfilled. 1t may be less. The actual character
string may contain any characters, They will be sent to
the printer without translation or special handling.

Note:

strings may be sent to the printer without opening it if
timing constraints are observed carefully. In this case
the applications program must know the baud rate of the
printing device a well as the Line Processor = Main
computer line. The program just issues printer strings
and no requests are sent back to the Main computer by the
Line processor. This was a deliberate implementation to
allow higher speed printing over networks without waiting
for the response, Observe that if strings are sent too
fast the printer buffer in the Line Processor will
overflow: data will be lost and the Line Processor will
die. The printer buffer normally holds 47 characters..

Open graphics display (graphics line processor only)
Send(33B, 53B)

Result:

RLBZ,

1-MAR=76 14:43 < LP, MCS4.NLS5;2, > 12

Disables mouse tracking on the graphics display.
Close graphics display (graphics line processor only)
Send{(33B, 54b)
Result:
Ensables mouse tracking on the graphics displav.
Write qgraphics display (graphics line processor only)
Send(33B, 52B, Dev, Count+40B, <characters>)
Result:
The Dev is normally 40B and is ignored by Line
Processors. Characters from the application program are
written directly on the graphics display. Since the
characters are not buffered, the graphics display must bpe
connected at a higher baud rate than the external
processor.
Set graphics cursor resolution (graphics line processor only)
Send(33B, 62B, N’)
Result:
N controls the mask applied to the cursor coordinates
before they are used to position the cursor on the

graphics display:

N = 0 Mask 0

=1 = 1 LSB is cleared (etc)
= 2 = 3

= 3 =7

= 4 = 17B

=5 = 378

Application notes:

Avoid writing text (or "string of blanks") beyond the end of a
line: the display may insert an unwanted line or drop the extra
characters.

Avoid positioning the cursor to any x>Xmax or y>Ymax.

Avoid doing an insert line on the last line: the display may
sCroll the entire screen.

RLB2, 1=-MAR=76 14:43 < LP, MCS4.NLS;2, > 13

Delta Data (DItype=1) must be treated as a special case in the
following respect:

when writing text at (X,y) on a line which does not already
have text on it up to position x (e.g., after a clear screen
or insert line), the applications program must send x/f pad
characters after the first character written at position
(x,¥). The display takes that long to move a CR svymbol into
the proper display memory location. (0Our thanks to Delta
Data).

we expect to stop supporting Delta Datas soon.
NOTE:

The Line Processor has a reset button on it (which will be used
only on rare occations). After power up or a hardware reset,
the following state prevails:

The screen is clear, the mouse tracking in operation.,
The bug selection stack is empty,

The full screen TTY simulation is in effect.
Coordinate mode is NOT in effect,

Printer is closed

All TTY simulation windows currently work as follows: Text is
inserted in the last line and "scrolling" occurs on each line
feed (i.e. it does not start on the top line of the window as
vou may prefer). A CR moves the cursor to left margin, a LF
effects a line break., Typing beyond the last character of the
line causes a line "wrap" - i.e. new text replaces the old
line, starting from the left margin. The only way to clear a
small TTY window is to send N line feeds into it, where N is
the number of lines in the window.

The usual sequence from the applications program will be to
position the cursor and perform some function, or write text,
or both. It must end such a sequence with a "resume tracking"
command. Any broadcast messages, links, etc. that come down
the line between the cursor position and the "resume tracking"
will go wherever the cursor happens to be,

Normallv, broadcast messages and the like will go into the
TTY simulation window. The difference being that they are
not preceeded by a position cursor command.

REENTER code in NLS will clear and repaint the entire screen

Mouse tracking will be done by the Line Processor under the
following conditions:

RLB2, 1-MAR=76 14:43 < LP, MCS4.NLS:2, > 14

IF the terminal has received a "resume tracking" command
since the last position cursor command, AND

IF there is no input from the TEN, AND
the mouse coords have changed since the last mouse tra&king
operation, or the cursor has been moved since the last mouse
tracking operation.

Tracking stops under the following conditions:
A position cursor command comes from the TEN,

Summaries

Line processor to Exernal processor

CHAR SEQUENCE MEANING

(all line processors)

CHARACTER Normal Character

(Ascii values 1B to 177B except 0 (String request), 2 (*B),
4 (*D), 34B (BCESC), and 176B (Reset))

BCESC 46 MX MY TP DT BD Interrogate Response
176 177 sSystem Reset
176 41 CCNT CCHRS Error report

(alpha line processors)

BCESC 43 CC X ¥ Uptional Seguence For
Control Chars

BCESC 43 CC X ¥ Sequence For “D (CA),
“B (CDOT), "°“X (CDb)

BCESC 43 MB X Y Sequence For Mouse
Buttons

0 (NULL) sString request

(graphics line processors)

BCESC 45 CC X1 X2 Y1 Y2 Gptional Sequence For Contrel

RLBZ, 1=-MAR=70 14:43 < LP, MCs4.NLS;2, > 15

Chars

BCESC 45 CC X1 X2 Y1 Y2 Sequence For "D (CA), ~°B (CDOT),
~X (CD)

BCESC 45 MB X1 X2 Yt Y2 Sequence For Mouse Buttons
Wwhere:

All numbers are in octal
CCNT = number of CCHRS + 40

CCHRS = CCNT=-40 data bytes; each byte is offset by 40

CccC control character + 140

MB current molse button state + 100

X = current x corrdinate + 40

e current y corrdinate + 40

top 6 significant bits of X coordinate + 40

X1

X2 = least significant 6 bits of X coordinate + 40

Y1 = top 6 significant bits of y coordinate + 40
Y2 = least significant & bits of y coordinate + 40
MX = maximum X coordinate + 40

MY = maximum Yy coordinate + 40

TP = line processor type and version + 40
DT = terminal delay time characteristic + 40
BD = line processor receive baud rate + 40

Exernal processor to Line processor

COMMAND CODE PADDING
position 33B, 40B, X', ¥’ none
TTY window 33B, 41B, Y TOP’, Y BOTIOM’ none
resume tracking 33B, 42B none

write blanks 33B, 43B, N’ N/F

RLB2,

1-MAR=76 14:43

delete line

insert line

push bug

pop bug

clear screen

reset

printer string
open printer port
close printer port
interrogate
standout mode on
standout mode off
coordinate mode off
coord;nate mode on

cursor resgdution

remote re¢sar

33B,
33B,
33B,
338,
33B,
338,
33B,
338,
33B,
33B,
33B,
33B,
33B,
338,

33B,

10 =

< LP, MCS4.NLS;2, >

44B
45B

46B, X', Y*
47B

50B

518

528, DEV, CNT’, String
53B

54B

55B

56B

578

60B

618

62B, N°

33B’s

le

DEL/F
INS/F
8/F

8/F
CLR/F
CLR/F
see text
see text
none
none
none
none
none
none
none

none

